Topological analysis of vector fields

The idea of this technique is to investigate critical points of a vector field, based on the eigenvalues of the Jacobian J at these critical points. A critical point is defined as an isolated point where the vector field vanishes, i.e., where u = 0. The following cases can be identified, based on the eigenvalues λ1 and λ2 of the Jacobian: 

 



 Trace[J] = a + d ( a, d are components of matrix J)

 (Trace[J])^2 = 4 det[𝐽] is parabola 


Attracting node: The eigenvalues are real and negative, corresponding to a sink. 

(Trace[J])^2 − 4 det[𝐽] = 0, 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 = 0,  Trace[J]<0, det[J]>0


Repelling node: The eigenvalues are real and positive, corresponding to a source.

(Trace[J])^2 − 4 det[𝐽] = 0, 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 = 0,  Trace[J]>0, det[J]>0


Saddle pointThe eigenvalues are real and have opposite sign.

(Trace[J])^2 − 4 det[𝐽] = 0, 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 = 0, det[J]<0  Trace[J]<0 or  Trace[J]<0 (i.e a+d는 무관)


Repelling focus: Both eigenvalues are complex conjugate and their real part is positive. 

(Trace[J])7 − 4 det[𝐽] ≠ 0, 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 ≠ 0, Trace[J]>0 det[J]>0


Attracting focusBoth eigenvalues are complex conjugate and their real part is negative. 

(Trace[J])7 − 4 det[𝐽] ≠ 0, 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 ≠ 0, Trace[J]<0 ,det[J]>0






Parameter set 1


    critical point (0, 0)

    Jacobian

   


    Det |J-λI| = 0, λ1=1, λ2=-1

    The eigenvalues are real and have opposite sign.

ð  Saddle point.

 

Parameter set 2


    critical point (0, 0)        

    Jacobian

        


Det |J-λI| = 0, λ=1

    The eigenvalue is real and positive

ð  Repelling node.

 

Parameter set 3


    critical point (0, 0)

    Jacobian

       


Det |J-λI| = 0, λ=-1

    The eigenvalue is real and negative.

ð  Attracting node.

 

Parameter set 4


    critical point (0, 0)

    Jacobian


Det |J-λI| = 0, (-2-λ)^2+1=0 , λ^2+4 λ+5=0 , ,

    Both eigenvalues are complex conjugate and their real part is negative.

ð  Attracting focus.



The source of the problem is Professor Filip Sadlo in University of Heidelberg



+ Recent posts